Two-Step Position Detection for NIF Automatic Alignment

Presentation to LLNL CASIS Workshop Livermore, California

Abdul Awwal

Automatic Alignment & Imaging Team Integrated Computer Controls System National Ignition Facility (NIF) Lawrence Livermore National Laboratory

November 18-19, 2004

UCRL-PRES-208084

The work was performed under the auspices of the U.S. Department of Energy National Nuclear Security Administration by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.

Outline

- Introduction
- Problem Statement
- Background
- Two step algorithm examples: simple to complex
- Results
- Challenges

National Ignition Facility

Automatic alignments need automated detection of beam position and automatic mirror adjustments The National Ignition Facility

 Automatic alignment uses video images of fiducials to find positions of laser beam

Problem: How do we detect positions when the fiducials vary in shape and size?

- Automatic alignment needs to detect position of beam
 - Challenges
 - Beams with different markers
 - Same marker, but sizes vary due to defocus
 - Circles of different sizes
 - Variations relatively large

Alignment image contains circles and squares

The National Ignition Facility

Defocused spots exhibit wide variation in size and quality

The National Ignition Facility

Different markers identify different beams

Some alignment images vary from 35 pixels to 200 pixels

Possible solutions

- Centroid
- Template

How to choose the template?

Algorithm background

CMF

$$H_{CMF}(U_x, U_y) = F * (U_x, U_y) = \left| F(U_x, U_y) \right| \exp(\left| \left| j \right| \left| U_x, U_y \right|)$$

POF

$$H_{POF}(U_x, U_y) = \exp(\prod j \prod (U_x, U_y))$$

AMPOF

$$H_{AMPOF}(U_{x}, U_{y}) = \frac{aF * (U_{x}, U_{y})}{\left[b + c |F(U_{x}, U_{y})| + d |F(U_{x}, U_{y})|^{2}\right]^{n}}$$

Position is obtained from cross and autocorrelation and the original template location

 $x_{pos} = x_{cross} \prod x_{auto} + x_c$

$$y_{pos} = y_{cross} \square y_{auto} + y_c$$

CMF output shows cross-correlation location

Problem

Problem

- Two circles, r1 < r < r2 and r3 < r < r4
- Square, d1 < d < d2

- Why ?
- By design
- Due to optics

Two step approach

Step 1: Search for right radius

- Segment based on blob size
 - Segment 1, less than 800
 - Segment 2, between 900 and 1100
 - Segment 3, between 1200 and 1400
- Change to square, repeat step 1

Two step process

Step 2: Find the position

Change to square, repeat step 2

Segmentation is performed based on pixel size

Feature sizes of interest (area in pixels)
 (1086, 1074, 1086, 836, 832, 836)

- Searching for squares (589.0, 158.5)
- Searching for circles at (52.0,158.0)

Movie of the circle match in the correlation plane shows correlation becomes a point at right radius

Correlation is also a circle

Circle becomes smaller as it nears the right radius

Correlation vs radius

Search selected square with dimension of 15.5 pixels

Correlation vs side

square dimension in pixels

Circles of two sizes and squares of a single size detected (after 3 searches and 3 correlations)

The National Ignition Facility

Example 2

- 5 circles, r₁ < r < r₂
 - Where $r_1 = 35$ and $r_2 = 260$

Pinhole images could vary from 35 pixels to 200 pixels (radius)

Solution to complex problem: Example 2

Successive approximation

Centroid

Section the image at centroid

Estimate $r_1 < r < r_2$

Search by matching

Correlate whole edge image with radius range

Find location

Cross-section of images could provide an initial estimate of the radius such as 37 and 204 pixels

The National Ignition Facility

Edge detected image

Two typical final results show the edge and center of the circular images

Refined algorithm

Successive approximation

Segment the image find ROI

Measure the pedestal

Estimate $r_1 < r < r_2$

Search by matching

Correlate segmented image with range of radius

Find location

More detailed in paper no. 5556-30

Box classifier

Search space shows 3 classes, range is chosen to bound the class- box classifier


```
Measure the pedestal area Estimate r_1 < r < r_2
```

```
if (pedestal It 700) then
minRad=5
maxRad=10
elseif (pedestal It 1000) then
minRad=11;
maxRad=22
else
minRad=14;
maxRad=27
end
```

Detection of four defocused spots

Challenges

- Partially missing
- Blobs may be divided into two
- Successive approximation may fail if initial guess is incorrect
 - automated guess correction by counting the right and wrong moves

Acknowledgement

- Wilbert McClay, Jim Candy, Walter Ferguson, Scott Burkhart, Karl Wilhelmsen (Automatic Alignment team)
- Erlan Bliss, Mark Bowers
- Eric Mertens, Patrick J. Opsahl (control room data collection)
- Paul Van Arsdall (feedback)